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Abstract. It is found that the theoretical behaviour of the relaxation time T for the random 
growing rate model (RGRM) under the influence of multiplicative noise of intensity Q (a 
monotonic decrease of T-' towards a limiting value as Q + w) differs markedly from that 
actually measured in electronic simulators of that system. A new electronic analogue 
experiment is described in which a distinct minimum in T-'( Q) has been observed for the 
first time, with clear evidence for an increase of I"-'( Q) with Q at large Q in good qualitative 
agreement with an earlier analogue experiment. The discrepancy between experiment and 
the theoretical solutions of the (idealised) equation is attributed to the profound influence 
exerted by the very weak additive noise which must also, in some measure, always be 
present in a real physical system. 

The often unexpected forms of behaviour exhibited by non-linear dynamical systems 
in noisy environments can frequently be accounted for in terms of suitable model 
equations in which the noise enters into one of the terms multiplicatively. Extensive 
discussions of a wide variety of examples taken from physics, chemistry, engineering, 
biology and other branches of science and technology may be found in the books by 
Horsthemke and Lefever (1984) and Risken (1985) and in the review by Faetti et a1 
(1985). Inherent in attempts to understand such systems is, of course, the ever-present 
danger that the idealised stochastic differential equations analysed by the theory may 
differ in subtle, but crucially significant, respects from the reality that they are intended 
to model. In this letter, we address a curious conundrum that has arisen in connection 
with the effect of multiplicative noise on the relaxation time T of a particular stochastic 
non-linear system: the so-called random growing rate model ( RGRM), also known as 
the Stratonovich model. We will show that a number of earlier, seemingly contradictory, 
analogue measurements and predictions of T can be reconciled if explicit account is 
also taken of the additive noise that must also, in some measure, always be present in 
a real physical system (Schenzle and Brand 1979). 

The stochastic differential equation in question, first studied by Stratonovich (1967), 
may be written 

1 = dx - bx3+ [X 

where [ represents Gaussian white noise with autocorrelation function 

( [ ( t ) [ ( t ' ) ) =  = 2 Q 6 ( t - t ' )  
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and d and b are constants. With an appropriate choice of values for these constants, 
( 1) represents an overdamped anharmonic oscillator moving in a double-well potential 
that can be used to model numerous bistable systems occurring in nature: in what 
follows all measurements and calculations will be normalised to the particular case of 
d = b = 1. Our interest centres on the relaxation time of the system 

where 
c(s) = (ax( t + s) 6x( t ) )  

6 x ( t )  = x ( t )  - ( x ( t ) ) .  

and 

The possible variation of T with Q has been subjected to close theoretical scrutiny by 
a number of workers in order, particularly, to determine whether or not the phenomenon 
of critical slowing down occurs near the noise intensity 

Q = Q c = d  ( 6 )  
where the maximum in the density at finite x vanishes and a singular maximum appears 
at x = 0 (Schenzle and Brand 1979). The recent calculations by Jung and Risken (1985) 
have established beyond doubt that, in reality, T-' falls monotonically with increasing 
Q from its deterministic ( Q  + 0) value of 2, towards an asymptotic ( Q  + 00) limit of 
2/ T. This result confirms the conclusions reached previously by HernQndez-Machado 
et a1 (1984) and is in excellent qualitative accord with a digital simulation by Sancho 
er a1 (1982a); it is, however, in clear and unambiguous disagreement with an analogue 
simulation experiment at the University of Pisa described by Faetti et a1 (1984) which 
showed definite evidence for an increase of T-' with Q in the region of large Q. In 
this letter, we report the outcome of a completely new analogue experiment, carried 
out at the University of Lancaster in an attempt to resolve these discrepant results. It 
was hoped, in particular, to establish whether or not the relaxation time of a real 
physical system can be expected to behave in the manner predicted by the theoretical 
solutions of (1). 

The analogue experiment was based on the electronic circuit shown in outline form 
in figure 1. Its design philosophy and mode of operation, and the method employed 
for the computation of T from the measurements of x(r), were essentially the same 
as described previously (Sancho et a1 1985) in connection with an investigation of 
relaxation times for the general cubic bistable. It is important to note, however, that 
the technique differed in several important respects from that used for the earlier 
analogue experiment on the RGRM by Faetti et a1 (1984): the electronic circuit was 
entirely different from the double-integrator/minimum-component design used by 
them; the noise source was a high quality commercial instrument (Wandel and Golter- 
mann, model RGI), rather than a modified linear feedback shift register (LFSR) device, 
and the autocorrelation functions were computed by means of a standard digital fast 
Fourier transform (FIT) method, rather than by the specially designed analogue 
correlator developed at Pisa. It should perhaps be emphasised that the role of the 
computer in the present work was purely as a data processor for analysis of x( t ) ;  the 
operation of the analogue circuit was quite unaffected by whether or not the computer 
was connected. 
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Figure 1. Block diagrams of the electronic circuit used to model (1). It is constructed 
entirely from standard analogue components. The computer serves as a data processor 
for the determination of reciprocal relaxation times T- ' (Q)  from the noise x(r); it does 
not affect the operation of the circuit in any way. 

Experimental measurements of T1( Q), shown by the points of figure 2, were made 
for two different scalings of the circuit in order to accommodate a wide range of Q: 
the circles refer to d = 0.250 and the squares to d = 0.125. For more convenient 
comparison with each other, and with the theoretical predictions, the data have all 
been normalised by appropriate changes of variable to correspond to (1) with d = b = 1. 
Estimates of their statistical reliability are indicated by the bars, except where these 
would have been smaller than the symbols themselves. The full curve represents the 
calculation of Jung and Risken (1985); it falls at large Q towards the asymptotic limit 

T -1 
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Figure 2. Reciprocal relaxation times T-' measured for the circuit shown in figure 1 as a 
function of the noise intensity Q (points), compared with the calculation (full curve) of 
Jung and Risken (1985). The measurements, which were obtained for d =0.25 (circles) 
and d = 0.125 (squares), have been normalised to the standard form (1) with d = b = 1. 
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of 2 / ~  (Hernindez-Machado et a1 1984) shown by the broken line. Three features of 
the data are of particular interest. First, and most important, although the experimental 
values of T-’ at first decrease with Q in qualitative agreement with the theoretical 
curve, they then pass through a distinct minimum and rise rapidly again at large Q. 
This behaviour is entirely consistent with the earlier measurements by Faetti et a1 
(1984). Secondly, it is evident that, in their region of overlap, the circled data lie 
systematically below the squares. The third feature is rather more subtle but, as we 
shall see, is also of considerable significance. It is that the scatter of the data points 
about imaginary smooth curves drawn through them is much greater than can be 
accounted for purely in terms of their statistical uncertainties. 

We have carried out complementary studies of T - ’ ( Q )  for (1) both by digital 
simulation and also through a calculation based on the projector operator method 
with an improved continued fraction procedure (CFP) that has enabled us to sum the 
entire Mori chain to infinity. In each case, the results obtained are in close agreement 
with the Jung and Risken (1985) curve of figure 2. (In addition, we have established 
that the earlier CFP calculation, reported by Faetti et al in 1984, yielded an incorrect 
result for T - ’ ( Q )  at large Q because of their truncation of the infinite Mori chain to 
20 states.) These topics will be treated in detail in a forthcoming publication. 

The question now needing to be resolved is this: why do calculations of T-’(Q) 
yield a monotonic decrease towards an asymptotic limit, whereas analogue experiments 
show distinct minima in T-’ (Q) ,  with an increase of T-’ with Q at large Q? We 
suggest that the answer is to be found in the weak additive noise that is always present 
in a real physical system (such as the analogue electronic circuit of figure 1) .  Following 
the ideas of Schenzle and Brand (1979) and Brand (1984), therefore, we propose that 
( 1 )  has little connection with physical reality as it stands. For the equation to provide 
a satisfactory description of processes that occur in nature, it is essential that an additive 
noise term should also be included on the right-hand side. In the present situation, 
the extra term cannot be of zero mean, because transitions would then be able to take 
place between the positive and negative potential wells, a phenomenon that occurs 
with negligible frequency in practice. We conclude that (1) must be replaced by 

X = d x  - bx3 + 5~ + 5 + g (7) 

where 5 represents noise of zero mean, which for convenience we take to be Gaussian 
and white, with autocorrelation function 

and cross-correlation function 

and g is a constant that is small compared to the equilibrium value of x, ( d / b ) ” 2 .  In 
order to test this suggestion, we have recalculated T-’ (Q)  using the method of Jung 
and Risken (1985) but with (7) instead of (l),  for a range of plausible values of D 
and g. Some results of these calculations are shown in figure 3. It is immediately 
evident that, even with D=O, a small finite value of g gives rise to a minimum in 
T-’(Q). In practice, prior to each measurement of T-’,  g was set carefully to zero 
within experimental error, but, because the latter is finite, and because of thermal drifts 
occurring during the acquisition period, g will not have been precisely zero. For the 
d =0.125 scaling of the circuit, we estimated that g usually lies in the range O <  18) < 
5 x so that the corresponding measurements would be expected to fall between 
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F b r e  3. Reciprocal relaxation times T-' as functions of the (multiplicative) noise intensity 
Q, calculated by the method of Jung and Risken (1985) for various values of D and g: 
curve ( 1 )  D = 0, g = 0; (2) D = 0, g = lo-'; (3) D = lo-', g = 
( 5 )  D = lo-', g = 5 x 

(4) D = 0, g = 5 x 

curves 2 and 4. In reality (cf figure 2) the data lie much higher than this. When 
account is also taken of additive noise, however, the calculated values of T-' are 
dramatically increased, even for extremely small values of 0, as shown by curves 3 
and 5 of figure 3 which are clearly in much better accord with the analogue measure- 
ments. Precise quantitative agreement is not, of course, to be anticipated because the 
effective value of D changes with x and consequently may be expected to increase 
with Q. For Q = 0, the measured value of D was about lo-' for d = 0.125. It would 
appear, therefore, that the existence of the minimum in the T- ' (Q)  measurements of 
figure 2 and the earlier observation by Faetti et a1 (1984) of an increasing T-' (Q)  in 
the high Q region can be accounted for in terms of weak additive noise within the 
analogue circuits (Faetti et a1 1983) in conjunction with a small additive constant. The 
unexpectedly large scatter of the data may be attributed to the differing effective values 
of g for the different data points, which will have the effect illustrated by the shifts 
between curves 2 and 4, or 3 and 5 ,  of figure 3. 

In conclusion, we would make three observations. Firstly, it might appear surprising 
in the light of the above discussion that good agreement should have been obtained 
for T- ' (Q)  in the case of the general cubic bistable (Sancho et a2 1985), without any 
consideration having been given to the possible influence of weak additive noise. There 
were important differences, however, between that system and the one currently under 
scrutiny: the minimum in T-' (Q)  observed by Sancho et a1 was associated with 
interstate switching processes that do not occur in the present case; and the effect of 
the additive noise (that must, of course, also have been present in the cubic circuit) 
would have been relatively unimportant because there were no (unphysical) sin- 
gularities to be removed (Schenzle and Brand 1979, Sancho et al 1982b) from the 
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theoretical densities. Secondly, and closely related to the above comments, it would 
seem that the effect of (even very weak) additive noise on the relaxation time corre- 
sponds to the removal (Brand 1984) of the long-time tail (Brenig and Banai 1982) in 
the correlation function. Finally, in the light of the foregoing results and remarks, we 
may conclude that, although the monotonic decrease of T-'( Q) predicted theoretically 
(Sancho et a1 1982a, Hemlndez-Machado et a1 1984, Jung and Risken 1985) on the 
basis of (1) is formally correct, it represents a phenomenon that does not occur in 
practice in real physical systems. 

It is a pleasure to acknowledge valuable discussions with C J Lambert, M San Miguel, 
J M Sancho and B Zambon. The work was supported in part by the Science and 
Engineering Research Council. 
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